Galaxy Kinematics

500 Internal Server Error

Internal Server Error

The server encountered an internal error and was unable to complete your request. Either the server is overloaded or there is an error in the application.



Our department has a strong observational and theoretical focus on galaxy kinematics and their dynamical interpretation, as well as on stellar and AGN feedback, underpinned by the development of unique instrumentation for our telescope facilities. We have expertise in the study of galaxy kinematics over a wide range of galaxy types from large, normal spiral galaxies to irregular, late-type systems, to star-bursts at low and high redshift. Our observational strengths include optical integral-field spectroscopy (IFS) of ionized gas and stars, and neutral-hydrogen studies using single-dish and
aperture-synthesis arrays. We have lead the development of IFS systems on the WIYN 3.5m telescope and the Wisconsin H-alpha Mapper (WHAM); we are developing new IFS systems for our 11m telescope, SALT; and we are members of the US SKA consortium.

Questions for which we actively pursue answers include:

How are galaxy disks assembled and heated?  An unambiguous prediction of cold-dark-matter structure-formation scenarios is that disks form late, at relatively recent times. The dynamically cold nature of disks limits the accretion rate at any given time, but provides little further constraint on the history of matter accretion onto disks, or their heating via dynamical or feedback processes. Observationally, the matter accretion rate has not been determined at any epoch. Several programs here are filling this gap in our knowledge by studying a variety of galaxy types at different look-back times and
environments.

How much mass is actually in galaxy disks -- is their rotation maximally supported at small radii by the mass of the disk? The answer to this question has profound implications for the shape of dark-matter halos, and hence on galaxy formation scenarios. Equally important, the answer to this questions provides the mass-to-light ratio of disk stellar populations, and thereby places limits on the faint-end of the initial mass function in galaxies outside of the
Milky Way, and other forms of dark-matter in the disk (e.g., stellar remnants, molecular gas, or sticky dark-matter). Some of the unique instruments developed here are being used to measure the mass in galaxy disks today.

A common theme throughout our collaborative research is spectroscopy -- a tool which allows us to tie our kinematic measurements into studies of abundances and stellar populations essential for a complete picture of the life-cycle of baryons in the universe.

UW-Madison Astronomy Home