技术拉动近在咫尺星际磁场

通过 特里德维特 |黄金城麦迪逊分校的通信
发布2019年6月10日

A new, more accessible and much cheaper approach to surveying the topology and strength of interstellar magnetic fields — which weave through space in our galaxy and beyond, representing one of the most potent forces in nature — has been developed 通过 researchers at the University of Wisconsin–Madison.

但尽管其重要性和广泛影响,星际磁场是天体物理学的前沿最后一个。鲜为人知的是,他们在很大程度上,是因为他们是极其困难的研究。

“有办法非常有限,研究在太空磁场的”解释 亚历山大lazarian

现在,很多的知识可以在手更容易。在写日记,本周(2019年6月10日) 自然天文由威斯康星州的天体物理学家领导的一个国际研究小组演示了能够追踪磁场的方向在星际空间的漩涡的新方法。

在自然界天文报告证明的概念建立在一系列发表在过去的两年lazarian和他的学生理论和数值研究,并制定出一种全新的方法来映射空间磁场的纠结。

到现在为止,在许多环境中扩散磁场的详细的映射的诸如与部署无论是在卫星或平流层中的流动高气球仪器在空间涉及红外线旋光的尘埃和气体云。

502 Bad Gateway


nginx

Applying the new Wisconsin technique to a number of interstellar molecular clouds whose magnetic fields had been previously measured 通过 the Planck satellite, Lazarian and his students were able to generate high-resolution maps using existing ground-based observations.

“The technique provides magnetic field maps of resolution comparable to maps obtained with the Planck mission,” says Lazarian, “and it utilizes spectroscopic observations collected 通过 researchers for other purposes. Given that the technique utilizes data from ground-based telescopes and interferometers, the resolution of magnetic field maps can be significantly improved.”

502 Bad Gateway

The new technique, Lazarian adds, also opens a unique window to the development of three-dimensional magnetic field maps, work that has already been demonstrated in a corresponding paper published in the Astrophysical Journal 通过 Lazarian and his student, Diego Gonzales Casanova.

黄金城家